
Minimum-time and vibration avoidance attitude maneuver for 
spacecraft with torque and momentum limit constraints in redundant 

reaction wheel configuration 

Kong Q. Hab, Michael D. Femianoa, Gary E. Mosier” 
“NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 

bJackson and Tull, Chartered Engineering, 7375 Executive Place, Seabrook MD 20706 

ABSTRACT 

In this paper, we present an optimal open-loop slew trajectory algorithm developed at GSFC for the so-called 
“Yardstick design” [ 11 of the James Webb Space Telescope (JWST). JWST is an orbiting infrared observatory featuring 
a lightweight, segmented primary mirror approximately 6 meters in diameter and a sunshield approximately the size of a 
tennis court. This large, flexible structure will have significant number of lightly damped, dominant flexible modes. 
With very stringent requirements on pointing accuracy and image quality, it is important that slewing be done within the 
required time constraint and with minimal induced vibration in order to maximize observing efficiency. With reaction 
wheels as control actuators, initial wheel speeds as well as individual wheel torque and momentum limits become 
dominant constraints in slew performance. These constraints must be taken into account when performing slews to 
ensure that unexpected reaction wheel saturation does not occur, since such saturation leads to control failure in 
accurately traclung commanded motion and produces high frequency torque components capable of exciting structural 
modes. A minimum-time constraint is also included and coupled with reaction wheel limit constraints in the 
optimization to minimize both the effect of the control torque on the flexible body motion and the maneuver time. The 
optimization is on slew command parameters, such as maximum slew velocity and acceleration, for a given redundant 
reaction wheel configuration and is based on the dynamic interaction between the spacecraft and reaction wheel motion. 
Analytical development of the slew algorithm to generate desired slew position, rate, and acceleration profiles to 
command a feedbacklfeed forward control system is described. High-fidelity simulation and experimental results are 
presented to show that the developed slew law achieves the objectives. 

Keywords: Minimum-time slew maneuver, flexible body dynamics, reaction wheel momentum and torque limits, 
attitude control. 

INTRODUCTION 

JWST is an orbiting infrared observatory scheduled to be launched in 201 1. Its deployed structure consists of a large 
flexible sunshield, on one side of which is a telescope with a lightweight 6.5-meter deployed primary mirror of 18 
segments and a suite of four science instruments, and on the other side is a spacecraft bus where the reaction wheels are 
mounted. For more details of the JWST configuration see 111. 

One of the key performance metrics is the image quality that is driven by wavefront error (WFE) and image motion. 
The current allocation for WFE and image motion due to structural dynamics is 14 nanometers (FtMS) and 4 milli-arc 
seconds (RMS), respectively. These stringent requirements dictate that dynamic disturbances induced internally be 
minimized to prevent any significant vibratory motion due IU iigiiily diinipei: systcm flexibk II?C&S that r a n  exceed the 
allocation for required image quality. For JWST, the primary source of internal disturbance is from the reaction wheel 
assemblies. In addition to static and dynamic imbalances that continuously produce unwanted forces and torques 
proportional to the square of the wheel spin speed, [2,3], the reaction wheel torque and momentum limits when 
encountered with large torque commands will result in discontinuity in the produced torque profile and its derivative, 
and in turn, create significant vibratory motion in the system. This situation potentially can happen during slew when 



reaction wheels undergo a large swing in momentum to affect the motion of the spacecraft whose mass is much greater 
than that of the reaction wheel. Avoiding reaction wheel limits during slews not only maintains the internal disturbances 
within the image performance requirements, but also allows for rapid retargeting and better tracking capabilities by 
preventing control failure in tracking commanded motion during slews. 

This paper describes a slew trajectory algorithm developed to minimize both the effect of the control torque produced 
by reaction wheels on the flexible body motion and the maneuver time. With reaction wheels providing control 
actuation, this algorithm produces a desired slew trajectory in terms of position, rate, and acceleration profiles as 
functions of reaction wheel parameters, which are initial wheel speeds, and wheel torque and momentum limits of all 
the reaction wheels in the system. These reaction wheel parameters are taken into account in the algorithm to ensure that 
reaction wheel limits can only be tangentially reached during the slew so that no discontinuity in actual torque will 
occur. These kinematics profiles are used to provide commands to any stable feedbacwfeedforward control system in 
order to perform the maneuver. Note that this paper describes the slew trajectory algorithm only as an open-loop system 
and does not consider it in a closed-loop control design. 

DERIVATION 

There are two steps in the development of the algorithm. The first step involves selecting the basic slew trajectory, 
which defines and parameterizes the functional form of the desired slew position, rate, and acceleration profiles. This 
step, while using an approach similar to that described in [4], extends it by taking into account the reaction wheel limits 
in obtaining the desired motion profiles. The second step optimizes the slew command parameters, such as maximum 
slew rate and acceleration defined in the fust step, for a given redundant reaction wheel configuration with torque and 
momentum limits, based on the dynamic interaction between the spacecraft and reaction wheel motion. 

In [4], a near optimal maneuver trajectory algorithm is given for the case with no reaction wheel constraints. This 
algorithm specifies, in a parametric form, a smooth function that basically approximates the sign function of a bang- 
bang law, which is a well-known form for minimum-time controllers. The trajectory motion in this case is continuously 
maintained at maximum acceleration over a long portion of the time during the slew period. The duration of this 
acceleration time portion is selected in a trade-off between minimum maneuver time and the degree of smoothness in 
the trajectory. 

In the presence of reaction wheel momentum and torque limits, arbitrarily long and continuously accelerating motions 
cannot be supported, implying that bang-bang controllers and the approach given in [4] are not applicable. With limits 
imposed on the reaction wheel momentum, the best that can be achieved in terms of minimizing maneuver time is to 
maintain spacecraft motion at its maximum rate allowable by these limits, over as long a portion of the slew time as 
possible. 

Maximizing this coasting time period means minimizing the time it takes to reach the maximum rate at the start of the 
slew, and the time it takes to go back to zero rate at the end of the slew. This requires that the maximum allowable 
acceleration and deceleration, which are bounded by the reaction wheel torque limits and initial wheel momentum, be 
used in getting to and from the maximum rate. 

Thus, the general acceleration profile appropriate for this case starts with an impulse whose amplitude is derived from 
reaction wheel torque limits, and whose direction is the direction of the desired motion. Following the impulse, the 
profile remains at zero over the entire slew duration, and ends with an impulse equal to the one applied at the start but in 
the opposite direction. The resulting rate profile is simply a rectangular curve, whose amplitude is derived from the 
reaction wheel momentum limits. 

In order to minimize the structural mode excitation, a smooth version of the acceleration impulsive profile described 
above is selected, and is chosen so that it and its first derivative are continuous and expressible in low order 
polynomials. The basic polynomials used in [4] are employed to provide smooth slew motion including at the two end 
points. 



Derivation of Slew Profile 

To achieve a smoothly varying torque, the desired acceleration profile generated by the slew trajectory algorithm has 
the following functional form: 

Where 
positive scalar time-function representing the desired spacecraft rate, parameterized by (AtaAk), and whose first order 
derivative is given as: 

is the maximum acceleration amplitude, ê  is a constant vector specifying the slew rotation axis, andf( .) is a 

to < t < t, = to i- Ata 

tl < t < t2 = t, + Ata 

E.2 

t4 < t < ts = t4 + Ata 

The time periods At, and At, can be expressed in term of the maximum acceleration magnitude G&, the maximum rate 
magnitude Wd , and the slew angle AB as: 

E.3 

A0 2- ma At" =-- 
ma ad 

and the total slew period is: 

E.4 AT = Atc + 4Ata 

It follows that the desired rate profile has the following form: 

The profile of the slew angle ABcan be directly obtained by integrating E.5 to give: 

E.6 
T 

AB(T) = 0, J f ( t ' , A t a , A t c )  dt' 
0 



Figure 1 shows the normalized slew acceleration, rate, and angle profiles described by El,  E5, and E6, when both a d  

and f& are set to 1. Also, in these plots, the time periods are selected to be At, =1 second and At,, =2 seconds. 
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Figure 1 - Idealized Trajectory Profile 

Since the dead band time At, cannot be negative, the maximum rate magnitude Wd must also satisfy the following 
condition: 

E.7 

which can be given in terms of At, by using the first relation in E.3 for Q , i s . :  

A 0  
2Ata I- 

Wd 



For later reference in the derivation of the maximum acceleration magnitude, given here are the relations between a, 
Wd, At,, and the slew angle dqdt,), at time At, after the start of the slew, when the desired acceleration profile 
reaches its positive maximum amplitude q, and the desired rate profile reaches half of its maximum value Wd: 

E. 8 

Derivation of the maximum rate magnitude 

The basic equation describing the system momentum of the spacecraft and reaction wheels in the inertial frame is: 

E.9 

b Where h, is the wheel momentum vector in wheel frame, and 4, represents the constant transformation from the wheel 

frame to the spacecraft frame. In a four-wheel configuration, h, is a 4-component vector, and 4 is a 3x4 matrix whose 
columns are reaction wheel rotational axes given in the spacecraft frame and can be obtained directly from the reaction 

wheel configuration. The left inverse of this matrix, denoted by A", is a 4x3 matrix and typically given to minimize the 

wheel speed magnitude. Ho and 1, are, respectively, the initial system momentum in the inertial frame, and the system 
inertia matrix in the spacecraft frame. Ho is assumed here to be a constant vector, i.e. there is no external torque, and 
consists only of wheel momentum. R(t) is the direction cosine matrix representing the transformation from the inertial 
frame to the spacecraft frame corresponding to the desired rate profile a t ) .  

h 

A b Using the minimum mean squared solution, %", for the inverse of 4, the wheel momentum vector of minimum 
magnitude given in the reaction wheel frame, as a function of the initial system momentum and the desired motion 
profile can be written as: 

E. 10 

For a redundant wheel configuration, where there are more than 3 wheels in operation for attitude control, if the null 
vector in the wheel frame is non-zero initially, then it must be added to E.10 and must be carried in all the subsequent 
steps in computing the maximum rate magnitude. 

With Equation E.3, E.10 can be expressed in terms of slew parameters as: 

E.11 

Let +hli, and -%?i,,, hh >O and z;i, >O, denote the momentum limits and torque limits, respectively, of each reaction 
wheel. These limits correspond to the four comers of a rectangular torque-speed curve. Although a typical torque-speed 
curve may have regions of decreasing torque as the wheel approaches saturation speeds, only the rectangular torque- 
meed curve is considered here. 



The momentum limits when applied to a reaction wheel leads to the following inequality: 

E.12 -L 5 h,, = ( $)i (R(t)Ho - zse^Wdf( t ) )  I L 
Where the index i indicates the i" wheel, and ( 2 )i denotes the i" row of the body-to-wheel transformation matrix. 
E.12 leads to the following upper and lower bounds of the spacecraft rate component along the i" wheel axis, due to the 
momentum limits of the i" wheel: 

Global bounds over the slew period can be obtained by taking the appropriate maximum and minimum values of the 
time-dependent terms over the period, i.e. 

The expression inside the above Min and Max operators taking over the slew time period represents the component of 
the system momentum that the i" wheel must be able to carry during the slew. As the spacecraft rotates, there are for 
each reaction wheel, two attitudes at which the system momentum on the wheel are maximum and minimum, which 
occur when the total momentum vector in the spacecraft frame is closest and farthest from the wheel's rotational axis. In 
addition the initial and final slew attitudes may represent extreme points in the case where there is no extreme point 
during the slew. For the four wheel case, there are 10 of these rotation angles, and the exact solutions of these angles 
can be obtained since R( .) can be expressed in terms of position without being explicitly dependent on time. 

The computation of these attitudes is simplified by considering a coordinate frame, referred to as the slew frame, in 
which the z-axis coincides with the slew axis, 2, and the x axis is defined such that the initial system momentum Ho is 
in the x-z plane. In this frame, motion of the vector H0 describes a cone about the z-axis as the slew progresses, and for 
a given wheel rotational axis vector, the minimum and maximum functions of E.14 can be computed straightforwardly. 
They can be shown to correspond to having H, at either the end points or lying in the plane spanned by the z-axis and 
the i" wheel's rotational axis. 

Sincef( .) is a positive function with the two end points at zero value, the upper and lower bounds on the body rate 
given in E.14 must have one bound positive and the other negative. Thus, the maximum rate amplitude, denoted by 
Udi , based on the i" wheel's momentum limit is simply the larger of the two bounds (i.e. the positive bound). That is: 

Also, the condition for a valid command slew is that the upper and lower bounds defined in E.14 must have opposite 
signs. This assures that the component of the system momentum on a reaction wheel cannot exceed hlim during the slew. 

The sign of the denominator in E. 15 plays a very important role in determining which of the two bounds is the 
maximum rate amplitude, as it indicates the direction in which that wheel must be rotated to achieve the desired 
spacecraft motion in the absence of the initial momentum. In general, i t  has the same sign as that of the wheel 
momentum limit that will be reached during the slew. In the case where this quantity is identically zero for the i" wheel, 



which means that there is no contribution from this reaction wheel to the slew and thus, it can be removed from the 
computation of the slew maximum rate and acceleration magnitudes. 

The maximum rate amplitude Wd that satisfies the momentum limits of all the reaction wheels in the system, is the 

smallest of all the Wdi : 

E. 16 Wd =v" {@di 1 
In the special case, where the initial system momentum Ho is along the slew axis ê  , Equation E.13 for all the reaction 
wheels, reduces to: 

- 4 m  + ( $)i H O  ($), z , e ^ u d f ( t )  & + ( $)i H O  

Which has constant bounds so that the maximum rate magnitude is easily obtained in this case. 

Derivation of the maximum acceleration magnitude 

The wheel torque required to carry out the desired motion is obtained by taking the derivative of E. 10, which gives: 

E.17 

Where the square brackets denote the matrix corresponding to the cross product operator, i.e. [ a ]  b = a X b 

With Equations E. l  and E.3, E.17 can be rewritten in terms of slew parameters as: 

d d 
dt dt 

E.18 -hw = ~ ~ $ [ ' ] R ( t ) H ~ f ( t ) - a h ~ " l , e ^ - f ( t )  

Using the same convention as in the above section in expressing components related to a reaction wheel, the following 
inequality is obtained when applying the torque limits to the i* wheel: 

The index i appears in @i to indicate that the derived parameter in this case is the maximum allowable acceleration due 
to the i* wheel. Rearranging E.19 leads to the following upper and lower bounds on the component of the spacecraft 
acceleration along the i* wheel axis, due to the torque limits on that wheel: 

At this pnint, an approach similar to what was used previously to derive the maximum rate magnitude can be used to 
cbtain a legitimate maximum value for the acceleration profile. This involves obtaining the global bounds for the time- 
Cependent term in E.20, which is the gyroscopic effect term, over the slew period, and talung the minimum of the norm 
cf the two bounds as the maximum allowable acceleration by the i" wheel. The desired acceleration magnitude is 
simply the minimum of these maximum allowable acceleration values over all wheels, i.e. by simply setting f(t) and its 
time-derivative respectively to YZ and +1, which are the values when the acceleration is at its maximum values, Equation 
E.20 can be manipulated to yield the following maximum wheel accelerations: 



This is an admissible solution because as the acceleration profile, which is a function of the derivative off(t) given in 
Equation E.2, changes sign from positive to negative in the course of the slew, the norm of the smaller bound will 
ensure that the acceleration profile will not exceed torque limit of the i* wheel. By talung the minimum over these 
smaller bounds of all the reaction wheels, the acceleration profile will be within all the wheel torque limits. Although it 
produces a legitimate solution for the maximum acceleration magnitude, and is actually quite easy to implement, this 
approach in general results in sub-optimum acceleration profile. 

An approach, which yields an optimum solution for the maximum acceleration amplitude, derives the maximum 
acceleration values for the positive and negative regions of the acceleration profile separately, and selects the minimum 
of the two as the solution. This approach turns out to be more complicated to implement since it requires an iterative 
method for finding roots of an equation involving transcendental functions. 

The inequality given by Equation E.20 when applied to the positive region of the acceleration profile reduces to: 

E.2 1 

Since Equation E.21 is true for time between the starting time to and to + 2dt,, evaluating the above inequality at time 
At, when the acceleration profile reaches its positive maximum magnitude and the derivative offlt) equals to 1, leads 
to the following inequality: 

E.22 

This inequality contains two unknown parameters, ai(+) and At,, which, when obtained by solving the equality of 
E.22, are the optimum allowable acceleration and the shortest time to reach the maximum rate magnitude, satisfying the 
system torque constraints and relations in E.5 for the i* wheel in the positive acceleration region. Although it is possible 
for Equation E.22 to have more than one set of solutions, the set which is the desired solution has the largest a i ( + )  
and smallest At,. 

With Equation E.8, the equality of E.22 can be rewritten in terms of just one variable, the slew angle A € +  evaluated at 
At, , for the i* wheel: 

E.23 

By using the slew coordinate frame defined in the previous section, E.23 can be simplified to the following form: 



E 2 4  - = B+Csin(AOa +@) 
A 

'ea 

Where A e a  = A8i(AtA is the slew angle at which the acceleration profile attains its positive maximum magnitude f& and 
the rate profile attains half of its maximum magnitude &&, and A, B, c, and @ are constants corresponding to terms in 
Equation E.23, i.e. 

Where SI(.) and &(.) are scalar functions given in terms of specified parameters, with SI assumed to have values 
between (-l,l), which limits the possible size of C. The terms of E.24 can be visualized as follows: B is the maximum 
possible acceleration that the i" wheel can provide along the slew rotation axis ê  . The term C sin(A8, + @) is the 
acceleration required to commutate the system momentum through the wheels as the slew progresses. The left-hand side 
of Equation E.24 is the remaining acceleration available to slew the body. 

Although Equation E.24 can not be solved analytically for AOa, some simple iterative search methods can be devised for 
finding the smallest root, which corresponds to the desired (minimum slew time) solution. 

Gne adequate search technique to find the first root is to start at the top left of the region, which corresponds to the zero 
angle and acceleration (B+lCl). The angle corresponding to this point using the left-hand side of E.24, i.e. 

, should be within the bounded region and on the left of the first root. Starting with this angle, by 
A e, =- 

€I + IC1 
stepping in an adequately small increment along the curve of the left-hand side of E.24, the interval, which contains the 
solution, can be determined. The following iteration method can be shown to yield the desired solution within this 
interval: 

E.26 
A 

Bk = _  < Omx a hk = B +  Csin(8, +@) s 4 -+ a,(+) { ak-l 

However, at any point in the above process, if an angle 8, > omX, where om, is the angle defines the boundary of the 
first quadrant of the total slew angle, the maximum rate magnitude must be decreased, according to E.7, to give a 
smaller A that will permit the above process to continue. This rate reduction is simply to adjust the desired motion 
profile so that available reaction wheel torque in the system can allow the motion to accelerate to the maximum rate 
within the time constraint to have a dead band in the acceleration profile. 

The same method described above can be applied to the negative region of the acceleration profile to obtain the desired 
salution for the negative region. The equivalent equation to E.23 for the negative region of the acceleration profile is the 
following: 

Having obtained the maximum allowable acceleration values for each of the reaction wheels in the positive, ai(+), 
and negative, ai( -), regions, the maximum acceleration magnitude is the minimum value taken over all these values, 
i.e. 



ad =F {a& (-> 7 adi (+>} 

In the special case, where the initial system momentum H,, is along the slew axis i? , the properly modified version of 

E.23 and E.27 for the i" wheel, which has non-zero term Zsi? , leads to the following solution: 

Where@ and a;i are computed from the above formulation based on reaction wheel configuration, momentum and 
torque limits, and slew command, and completely define the desired slew trajectory. 

SIMULATION EXAMPLE 

A simple time domain simulation was created to demonstrate spacecraft slew performance using this trajectory 
algorithm. The simulation was implemented using rectangular integration with a 1 second time step. The system model 
included only rigid body dynamics of the spacecraft, with the following inertia matrix (from an early conceptual design 
for JWST) 

11730 142 -7206 
142 27476 -113 1 ( k g m 2 )  

-7206 -113 20268 

The system model also included PD feedback control with a 1 Hz bandwidth, and feedforward control (W X h) to 
compensate for gyroscopic effects. The reaction wheel assembly in this model was a 4-wheel configuration. Each wheel 
was modeled using a rectangular torque-speed curve, with a 60 Nms momentum limit, a 0.3 Nm torque limit, and a 
rotor inertia of 0.0948 kg m2. The initial wheel momentum vector was (53.608,41.695, 11.913,5.956) Nms. The 
spacecraft was commanded to slew 359 degrees about the Y axis. The results are shown in figures 2 and 3. 

The total time to complete the slew was approximately 1800 seconds, as can be seen from the acceleration, velocity, and 
angle trajectories in figure 2. Comparing figure 2 to figure 1 shows that the salient features of the ideal trajectory are 
present, namely the smooth transitions between the segments of the trajectory, the smooth peak in the acceleration, and 
the flat coasting at maximum velocity. Figure 3 shows that hard saturation in both wheel torque and wheel momentum 
is avoided. The torque limit is approached in wheel 1 (at t Z 500 seconds) and in wheel 2 (at t 2 1500 seconds). The 

momentum limit is approached in wheel 2 (at t z 1150 seconds) and in wheel 4 (at t s 650 seconds). Thus, excitation of 
flexible modes would be mitigated. 
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Figures 2 - Slew Trajectories from Simulation 
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Figure 3 - Wheel Torque (left) and Wheel Momentum (right) Profiles from Simulation 
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CONCLUSION 

An optimal open-loop slew trajectory algorithm is described. This algorithm enables minimum-time maneuvers of a 
spacecraft while avoiding the excitation of structural modes that would otherwise impact settling time. Furthermore, the 
algorithm does this without knowledge, or a model, of the flexible structural dynamics - all that is required is 
knowledge of the spacecraft rigid body mass properties and the reaction wheel torque and momentum limits. It has been 
implemented and tested via simulation to support the Yardstick design of the JWST. Additionally, experiments were 
performed with the MIT Origins Testbed, using a reduced-order form for a single-axis system, which confirmed the 
ability to track the commanded trajectory and to avoid excitation of unmodeled dynamics. 
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